Недавно случившаяся авария ракеты "Днепр", космического носителя, переделанного из военной ракеты Р-36М УТТХ, снова вызвала интерес к ракетному
топливу.
Жидкостные ракетные двигатели (ЖРД) – очень совершенные машины, и их характеристики на 90%, а то и больше, определяются примененным топливом.
Идеальный окислитель с точки зрения химии – жидкий кислород. Но одной химией ракета не исчерпывается, это конструкция, в которой все взаимоувязано. Вернер фон Браун выбрал для Фау-2 спирт и жидкий кислород, и дальность ракеты получилась 270 км. Но если бы ее двигатель работал на азотной кислоте и дизельном топливе, то дальность увеличилась бы на четверть, потому что такого топлива в те же баки помещается на две тонны больше!
Ракетное топливо – кладовая химической энергии в компактном виде. Топливо тем лучше, чем больше энергии запасает. Поэтому вещества, хорошие для ракетного топлива, всегда чрезвычайно химически активны, непрерывно пытаются высвободить скрытую энергию, разъедая, сжигая и разрушая все вокруг. Все ракетные окислители либо взрывоопасны, либо ядовиты, либо нестойки. Жидкий кислород – единственное исключение, и то только потому, что природа приучилась к 20% свободного кислорода в атмосфере. Но даже жидкий кислород требует уважения.
Хранить вечно
Баллистические ракеты Р-1, Р-2 и Р-5, созданные под руководством Сергея Королева, не только показали перспективность этого вида оружия, но и дали понять, что жидкий кислород не очень подходит для боевых ракет. Несмотря на то, что Р-5М была первой ракетой с ядерной боеголовкой, а в 1955 году даже было произведено реальное испытание с подрывом ядерного заряда, военных не устраивало, что ракету нужно заправлять непосредственно перед стартом. Требовалась замена жидкому кислороду, замена полноценная, такая, чтоб и в сибирские морозы не замерзала, и в каракумскую жару не выкипала: то есть с диапазоном температур от –55°С до +55°С. Правда, с кипением в баках проблем не ожидалось, так как давление в баке повышенное, а при повышенном давлении и температура кипения больше. Но кислород ни при каком давлении не будет жидким при температуре выше критической, то есть –113°С. А таких морозов даже в Антарктиде не бывает.
Азотная кислота HNO3 – другой очевидный окислитель для ЖРД, и ее использование в ракетной технике шло параллельно с жидким кислородом. Соли азотной кислоты – нитраты, особенно калийная селитра – уже много веков использовались как окислитель самого первого ракетного топлива – черного пороха.
Молекула азотной кислоты содержит как балласт лишь один атом азота да "половинку" молекулы воды, а два с половиной атома кислорода могут быть использованы для окисления горючего. Но азотная кислота – очень "хитрое" вещество, настолько странное, что непрерывно реагирует само с собой – атомы водорода от одной молекулы кислоты отщепляются и прицепляются к соседним, образуя непрочные, но чрезвычайно химически активные агрегаты. Из-за этого в азотной кислоте обязательно образуются разного рода примеси.
Кроме того, азотная кислота очевидно не удовлетворяет требованиям совместимости с конструкционными материалами – под нее специально приходится подбирать металл для баков, труб, камер ЖРД. Тем не менее "азотка" стала популярным окислителем еще в 1930-е годы – она дешева, производится в больших количествах, достаточно стабильна, чтобы ею можно было охлаждать камеру двигателя, пожаро- и взрывобезопасна. Плотность ее заметно больше, чем у жидкого кислорода, но главное ее достоинство по сравнению с жидким кислородом состоит в том, что она не выкипает, не требует теплоизоляции, может неограниченно долго храниться в подходящей таре. Только где ее взять, подходящую тару?
Все 1930-е и 1940-е годы прошли под знаменем поиска подходящих емкостей для азотной кислоты. Но даже самые стойкие сорта нержавеющей стали медленно разрушались концентрированной азоткой, в результате на дне бака образовывался густой зеленоватый "кисель", смесь солей металлов, который, конечно же, нельзя подавать в ракетный двигатель – он мгновенно забьется и взорвется.
Для уменьшения коррозионной активности азотной кислоты в нее стали добавлять различные вещества, пытаясь, зачастую методом проб и ошибок, найти комбинацию, которая бы, с одной стороны, не испортила окислитель, с другой – сделала его более удобным в использовании. Но удачная добавка была найдена только в конце 1950-х американскими химиками – оказалось, что всего 0,5% плавиковой (фтористоводородной) кислоты уменьшают скорость коррозии нержавеющей стали в десять раз! Советские химики задержались с этим открытием лет на десять-пятнадцать.
Секретные присадки
Тем не менее первый в СССР ракетный самолет-перехватчик БИ-1 использовал именно азотную кислоту и керосин. Баки и трубы пришлось делать из монель-металла – сплава никеля и меди. Этот сплав получался "естественным" образом из некоторых полиметаллических руд, поэтому был популярным конструкционным материалом второй трети ХХ века. О его внешнем виде можно судить по металлическим рублям – они сделаны из почти "ракетного" сплава. Во время войны не хватало, однако, не только меди с никелем, но и нержавеющей стали. Приходилось использовать обычную, покрытую для защиты хромом. Но тонкий слой быстро проедался кислотой, поэтому после каждого запуска двигателя остатки топливной смеси приходилось скребками удалять из камеры сгорания – техники поневоле вдыхали ядовитые испарения. Один из пионеров ракетной техники Борис Черток однажды едва не погиб при взрыве двигателя для БИ-1 на стенде, этот эпизод он описал в своей замечательной книге "Ракеты и люди".
Помимо добавок, снижающих агрессивность азотной кислоты, в нее пытались добавлять разные вещества, чтобы повысить ее эффективность как окислителя. Наиболее результативным веществом была двуокись азота, еще одно "странное" соединение. Обычно – газ бурого цвета, с резким неприятным запахом, но стоит его слегка охладить, он сжижается и две молекулы двуокиси склеиваются в одну. Поэтому соединение часто называют четырехокисью азота, или азотным тетраоксидом – АТ. При атмосферном давлении АТ кипит при комнатной температуре (+21°С), а при –11°С замерзает. Чем ближе к точке замерзания, тем бледнее цвет соединения, становящегося под конец бледно-желтым, а в твердом состоянии – почти бесцветным. Это оттого, что газ состоит в основном из молекул NO2, жидкость – из смеси NO2 и димеров N2O4, а в твердом веществе остаются одни только бесцветные димеры.
Добавка АТ в азотную кислоту увеличивает эффективность окислителя сразу по многим причинам – АТ содержит меньше "балласта", связывает попадающую в окислитель воду, что уменьшает коррозионную активность кислоты. Самое интересное, что с растворением АТ в АК плотность раствора сначала растет и достигает максимума при 14% растворенного АТ. Именно этот вариант состава и выбрали американские ракетчики для своих боевых ракет. Наши же стремились повысить характеристики двигателей любой ценой, поэтому в окислителях АК-20 и АК-27 было по 20% и 27% соответственно растворенного азотного тетраоксида. Первый окислитель использовался в зенитных ракетах, а второй – в баллистических. КБ Янгеля создало ракету средней дальности Р-12, которая использовала АК-27 и специальный сорт керосина ТМ-185.
Зажигалки
Параллельно поискам лучшего окислителя шли поиски оптимального горючего. Военных больше всего устраивал бы продукт перегонки нефти, но и другие вещества, если они производились в достаточных количествах и стоили недорого, тоже можно было использовать. Проблема была одна – ни бензин, ни керосин, ни дизельное топливо не воспламеняются сами при контакте с азотной кислотой, а для военных ракет самовоспламенение – одно из ключевых требований к топливу. Хотя наша первая межконтинентальная ракета Р-7 использовала пару "керосин – жидкий кислород", стало ясно, что пиротехническое зажигание неудобно для боевых ракет. При подготовке ракеты к пуску требовалось вручную вставить в каждое сопло (а их у Р-7 ни много ни мало 32–20 основных камер и 12 рулевых) деревянную крестовину с зажигательной шашкой, подключить все электропровода, которыми шашки воспламеняются, и проделать еще много разных подготовительных операций.
В Р-12 эти недостатки были учтены, и зажигание обеспечивалось пусковым горючим, которое самовоспламенялось при контакте с азотной кислотой. Его состав был найден еще немецкими ракетчиками во время Второй мировой войны, и называлось оно "Тонка-250". Наши ракетчики переименовали его в соответствии с ГОСТами в ТГ-02. Теперь ракета могла стоять заправленной несколько недель, и это был большой успех, так как ее можно было бы запустить в течение пары часов вместо трех суток для Р-7. Но три компонента – много для боевой ракеты, а для использования в качестве основного горючего ТГ-02 годился только для зенитных ракет; для баллистических ракет дальнего действия нужно было что-то более эффективное.
Гиперголики
Химики назвали пары веществ, самовоспламеняющихся при контакте, "гиперголическими", то есть, в приблизительном переводе с греческого, имеющими чрезмерное сродство друг с другом. Они знали, что лучше всего воспламеняются с азотной кислотой вещества, имеющие в составе, кроме углерода и водорода, азот. Но "лучше" – это насколько?
Задержка самовоспламенения – ключевое свойство для пар химических веществ, которые мы хотим сжечь в ракетном двигателе. Представьте – включили подачу, горючее и окислитель накапливаются в камере, а воспламенения нет! Зато, когда оно наконец происходит, мощный взрыв разносит камеру ЖРД на кусочки. Для определения задержки самовоспламенения разные исследователи строили самые разные по сложности стенды – от двух пипеток, синхронно выдавливающих по капельке окислителя и горючего, до маленьких ракетных двигателей без сопла – форсуночная головка и короткая цилиндрическая труба. Все равно взрывы раздавались очень часто, действуя на нервы, выбивая стекла и повреждая датчики.
Очень быстро был обнаружен "идеальный гиперголь" – гидразин, старый знакомый химиков. Это вещество, имеющее формулу N2H4, по физическим свойствам очень похоже на воду – плотность на несколько процентов больше, температура замерзания +1,5°С, кипения +113°С, вязкость и все прочее – как у воды, но вот запах…
Гидразин был получен впервые в чистом виде в конце XIX века, а в составе ракетного топлива впервые употреблен немцами в 1933 году, но в качестве сравнительно небольшой добавки для самовоспламенения. Как самостоятельное горючее гидразин был дорог, производство его недостаточно, но, главное, военных не устраивала его температура замерзания – выше, чем у воды! Нужен был "гидразиновый антифриз", и его поиски шли непрерывно. Уж очень гидразин хорош! Вернер фон Браун для запуска первого спутника США "Эксплорер" заменил спирт в ракете "Редстоун" на "гидин" (Hydyne), смесь 60% гидразина и 40% спирта. Такое горючее улучшило энергетику первой ступени, но для достижения необходимых характеристик пришлось удлинить баки.
Гидразин, как и аммиак NH3, состоит только из азота и водорода. Но если при образовании аммиака из элементов энергия выделяется, то при образовании гидразина энергия поглощается – именно поэтому прямой синтез гидразина невозможен. Зато поглощенная при образовании энергия выделится потом при сгорании гидразина в ЖРД и пойдет на повышение удельного импульса – главного показателя совершенства двигателя. Пара кислород-керосин позволяет получить удельную тягу для двигателей первой ступени в районе 300 секунд. Замена жидкого кислорода на азотную кислоту ухудшает эту величину до 220 секунд. Такое ухудшение требует увеличения стартовой массы почти в два раза. Если же заменить керосин гидразином, большую часть этого ухудшения можно "отыграть". Но военным было нужно, чтобы горючее не замерзало, и они требовали альтернативу.
Пути разошлись
И тут пути наших и американских химиков разошлись! В СССР химики придумали способ получения несимметричного диметилгидразина, а американцы предпочли более простой процесс, в котором получался монометилгидразин. Обе эти жидкости, несмотря на их чрезвычайную ядовитость, устраивали и конструкторов, и военных. К аккуратности при обращении с опасными веществами ракетчикам было не привыкать, но все же новые вещества были настолько токсичными, что обычный противогаз не справлялся с очисткой воздуха от их паров! Нужно было либо использовать изолирующий противогаз, либо специальный патрон, который окислял токсичные пары до безопасного состояния. Зато метилированные производные гидразина были менее взрывоопасными, меньше впитывали водяные пары, были термически более стойкими. Но вот температура кипения и плотность по сравнению с гидразином понизились.
Поэтому поиски продолжались. Американцы одно время очень широко использовали "Аэрозин-50" – смесь гидразина и НДМГ, что было следствием изобретения технологического процесса, в котором они получались одновременно. Позднее этот способ был вытеснен более совершенными, но "Аэрозин-50" успел распространиться, и на нем летали и баллистические ракеты "Титан-2", и корабль "Аполлон". Ракета "Сатурн-5" разгоняла его к Луне на жидком водороде и кислороде, но собственный двигатель "Аполлона", которому нужно было включаться несколько раз в течение недельного полета, должен был использовать самовоспламеняющееся долгохранимое топливо.
Тепличные условия
Но дальше с баллистическими ракетами произошла удивительная метаморфоза – они спрятались в шахты, для защиты от первого удара противника. При этом уже не требовалось морозостойкости, так как в шахте воздух подогревался зимой и охлаждался летом! Топливо можно было подбирать, не учитывая его морозоустойчивости. И сразу же двигателисты отказались от азотной кислоты, перейдя на чистый азотный тетраоксид. Тот самый, что кипит при комнатной температуре! Ведь давление в баке повышенное, а при повышенном давлении и температура кипения нас беспокоит гораздо меньше. Зато теперь коррозия баков и трубопроводов уменьшилась настолько, что стало возможным хранить ракету заправленной на протяжении всего срока боевого дежурства! Первой ракетой, которая могла стоять заправленной 10 лет подряд, стала УР-100 конструкции КБ Челомея. Почти одновременно с ней появилась гораздо более тяжелая Р-36 фирмы Янгеля. Нынешний ее потомок, последняя модификация Р-36М2, кроме баков, мало имеет общего с первоначальной ракетой.
По энергетическим характеристикам пары "кислород – керосин" и "четырехокись азота – НДМГ" очень близки. Но первая пара хороша для космических ракет-носителей, а вторая – для МБР шахтного базирования. Для работы с такими ядовитыми веществами была разработана специальная технология – ампулизация ракеты после заправки. Смысл ее понятен из названия: все магистрали перекрываются необратимо, чтобы избежать даже малейших утечек. Впервые она была применена на ракетах для подводных лодок, которые тоже использовали такое топливо.
Твердое топливо
Американские же ракетчики для боевых ракет предпочли твердое топливо. Оно имело несколько худшие характеристики, зато ракета требовала гораздо меньше подготовительных операций при запуске. Наши тоже пытались использовать твердотопливные ракеты, но последнюю ступень все равно приходилось делать жидкостной, для того чтобы скомпенсировать разброс работы твердотопливных двигателей, которые невозможно регулировать так, как жидкостные. А позднее, когда появились ракеты с несколькими боеголовками, на последнюю жидкостную ступень легла задача "разведения" их по целям. Так что пара "АТ–НДМГ" без работы не осталась. Не остается и сейчас: на этом топливе работают двигатели космического корабля "Союз", Международной космической станции и многих других аппаратов.
Источник: "Популярная механика"